No subject


Mon Jun 20 21:04:01 UTC 2011


``The deployed model considers a time interval of seven (7) days to
model connection rates (i.e. $t_i - t_{i=E2=88=921} =3D 7$ days).''

If I understand correctly, this means trends occurring on a
week-to-week basis (or larger periods) are considered and
higher-frequency trends are undesirable? In that case, perhaps
pre-processing the data by filtering would be useful.

Attached (1.png) is an example (in red) of filtering out all
frequencies higher than that corresponding to a one week period,
compared to the original data (green). This is the entire data for
Switzerland, abscissa in seconds.

The result is a little less noise, which might help with your algorithm.

The same filter applied to the Egypt and Iran data (2.png and 3.png
respectively) doesn't harm the signal for those two censorship events,
at least not by visual inspection. (You'd probably want to use a
Hanning window or something, to avoid those artifacts at the extreme
ends of the red graphs.)

But filtering like this would also mean that the signal of an event
which occurs and is over in less than a week, like this week's, is
also lost...

--=20
Mansour

--0016e6594ab26df55a04ad25bd02
Content-Type: image/png; name="1.png"
Content-Disposition: attachment; filename="1.png"
Content-Transfer-Encoding: base64
X-Attachment-Id: f_gso9sels0

iVBORw0KGgoAAAANSUhEUgAAAjAAAAGxCAIAAADzlxvYAAAAAXNSR0IArs4c6QAAFZJJREFUeNrt
3dtyozgUBVA0lf//5TMPODThZnGXYK2amuqmExtj0NYRAlJENABwt/9sAgAEEgAIJAAEEgAIJAAE
EgAIJAAEEgAIJAAEEgAIJAAEEgAIJAAEEgAIJAAEEgAIJAAEEgAIJAAEEgAIJAAEEgAIJAAEEgAI
JAAEEgAIJADe5Ofet08p9f8aEf3l3V8zlwAgkLYbJ0pKqV246g8ACKRjiqRjc2VQewG8XPl9959y
NtCBtY40Ahg3jIVn0s+Dt36NQ3n1nhiz5tbcmpe/5oX7zzYCQIXURMT4HFK3cNUSAATS3kzKWZiz
BIB6PXPOtOIJoLpW0Z0aABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQ
ABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQAEAg
ASCQAEAgASCQAEAgASCQAEAgASCQAEAgASCQAEAgAfSkJtkIAgkABBIAAgkABBIAAgkABBIAAgkA
BBIAAgkABBIAAgkABBIAAgkABBIAAgkAXhFIKaXBXzcsAUAgHZxGERER3fKcJQBU7aeENDopV/qv
GRG+bOBVquuv/3f79hIVAJRSIZ0UTqIOntblb1I0justbWAV1dJPIdtLqQSgQiox1dsw7yIqZwkA
Aung0nIyZnKWAFAvF8YCIJAAQCABIJAAQCABIJAAQCABIJAAQCABIJAAQCABIJAAQCABIJAAQCAB
IJAAQCABIJAAQCABZElNshEEEgAIJAAEEsDhjLwJJAAQSAAIJAAQSAAIJAAQSAAIJAAQSAAIJJsA
AIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAKpk5rkCwYQSAB6lggkAAQSAAgkAAQS
AAgkAAQSAAgkAAQSAAgk4I3CNbICqV6u8QYQSADqKgQSgEwSSAAgkICyOI+LQAJAIAGAQAKgUj/3
vn1Kf8aXI6K/vPtr5hLgwcyUE0gn72GjgGn/0C5f9QcABNIxpdJJuaKQgtqlJkXjEN7Y+lXkP1sN
ABXSx6mDb2oj4J0mz4mokNRGAJRdIUVEl0ldmHcLVy0BntnNT01ylAuk64vKhYU5SwColwtjgeLM
3QEvRdMY5xdIACCQgFdzjwaBBFt43AA4TAQSAAJJTwQAgbTA/a8AvViBBAACCQCBBAACCXgRJ3sE
EgAIJAAEEgAIJIA7HXi+yqkvgQSAQAKorY5BIAEgkECXExBIAHpgAglAfnC/H5sA4EqfJ7J7No4K
CaimyX5cRaWeE0jAi6WUdtcigkQgASCQAIqtebbVK6mMe/8kxZZAAt6cYWFlBFIBognjv/CgQzri
5AN67vW1JAIJYE39ITYEEgCCUyABT222h5O289vxbS3+n/G63gSEQ8YJQwYJJNAhfYnyW3wzGgQS
UF9tVNpqqG8EEsATams1ukAC3hgAJbf+0YR6SyABb5HV3PdHBc8cIWzT8c8qhVNJAgmosWaKvMC4
5LTTrtpLDgkkoLLiZqrhPmV+Wpthf5NsnH+rhtecKxJIAKvDYyFIhn+NjS81eJ3wYD6BBFScMb1G
fLlB78fGzlkDkZoUTYoDZh9EOuaxTAIJoNxiaDItDhw0O6qgSaE2EkjAg8qj2x0YdQomgQQ8RUrt
kFqBj7zr123t0B8CCVAtIZAAyoux8TmntaNwcyeuFt4CgQTc7K4rco4aJVOQCSSA6gPS5bECCXho
lpxdq0R8H2rr/cxc3nTLB6+m2BJI/3YFvRUgv8U4Nj6lkUACWBkkc3VPrP4VBBJQWLVRYHO98rql
DaOFXUkkrgQS8MRsmxr4ahfOtvsr7yD3b3pezN49b/yC7btPrsPcncsRSMBDjFv/42uRTUHiIiSB
RE0NB1S8P8cxP4NAQiZx6TdbWrnQv2D2jN1y1WuaeieQEEI8UH7yjWNgQ2rOPSTJeJ1AAp7ar8lq
4AdDZJMjZpM5lOJzomg8kSG/49WFUPsH43UCCXhcGGW37Auz7y6rzz4T7aSRQALYFmYrUqeJhZw7
+8G1AgmKbGsc5BT51Lt2fUxVqDuQ0q/xwrVLeFgGyB6Oqmyyf3pdnAxycfBe5jhUFkgppfjVpUu3
cNUS4M25sv2eCOt/a3B7iOnayA0a1vu5eSc77zuLdn9J//4KvCO3rqyt24cJpF4clTNqV11//b9y
NlzoUBy4PQ86IFOTjIlTXdn0dacdHCDbdvKcETnz7mqqkM5Lo0H97mwEsDa3lpOm/FNE/Xa1imqp
iEkNaiMVG5zRHp+XUjk/lsKku6oqpDa0u+huk6mbqtAFVc4SAATSMRXl8vKcJZTbVU3mlVDzDtzE
Zb/1Zi6M5YTC9+/zysoZajdy+OSN+bWHemYXVvYIJI2RL4VXFiWjaLlyMlt/xUyiE0j6L0IIDiqb
EEhUdlBLEJ6xYxyaT8ojgUSdVVHkPtsGcsOlmGEPAzACCZ6e4sY2r6p1EEjU1TpqHLHzIJBArVNg
iZL3mZxoQSBxZPe2bVOMIDERNqofBBIqCUAgAZTFPDeBVHZf+2WDCZXWFq5wouodTxAKJA39szqw
TkI4IpZ2neNbfPMsBBJI/Tf1M0AgadZrX8kXhtOzP7LQQiBRcAu1pvlVPCFrBRKsDg+Vwb0b2fZc
ud3FiUDiKcfttubPtLp6U+SGVZUZAgnVzMNWRlApbYcfQdIJJK48wstvNYTWQzaCifsIJB7QC+53
VFOTRFR1e0WlpYb5CAIJvf47q4dIG1/w7Gx2i1IQSDLgireIdHwn2nSy2/c0XwECaW+RXvRRNNVH
LmiFr5rvtBx7hWyQC1aj5NFLI6sIJCqQmvR1dL4doWrb9GgixaeBe20zV9H5DFGEQHpBk7T1OC+5
5ht8qO5MyUL7Ox7cm9wytTSLn2+n8Np35Yq139HcSOyGz2X0D4HEye1anFUH7Emja6YPjFvYzaff
6m7cf581DAKpaSIeMHlJ//EZX4Q7MoAK6W2tZllNyUTT9js5IlL1N4ZJTdrTdq/99dtzohumU/cg
kPjWYJldXUlt8f3Haqvs9+wqJkogkJ5wVAsM3YsbV2/ipGB2jv7bdV0RzIsC6RGnkZ6ToFON7Oxk
h5edEq+oezH9lTnQEEiPSs8X36673mnQX37yqFgtprk/ZLakYToEUvHF3JpG8NwWvL1gSKvRtZ6H
5sHmu+rVUcAtbKvePxlw5pWB9PRRu1MP7M9VkFOd4jOa1PaNsj7REd/pzk23fwuseoXLMmzPG+XX
T8PrpntnlcziE0i8znJzfEajsNBa5TSC3QoX0WCtScTu9kgTH7nMue8p99pez3FAIL3Icks9/tdt
vf4ixk8ymuYS7h0++fOrN+Dgw0Z0X+W938XC/tafWTeZQ5+7FGbfDmPwSQ3iIZCKDqG51uFzZ9KT
m7BB0z9uaLbfgi9Or8aOyqr8CDy2Vriz8thatG1e58H+jEB6dgNf02mk7o6cF1xsuD/JNr/ChhDa
1WDtPjNxTXNZfZXwG2azHySl288SGWYUSBzcZvWrqJzb8BzY0q19qZzjv/zrQJuvg3WZnZ4ib+90
cRAOdgm1EQKp5m5oalJ8/tsQJF9an95DIsZZck3LVXih0PUABi1ppKlbfY+3YRT5iXZ8HdvO7X02
49SWRCA9vrKobJfPOUT7jd3XXueKY/78qV+rh01SWhvAR9UE0yfwmz/jTufeKzZ71931bI4SOgFu
9yCQ3lFTRH0HZ/NbAx14lO54qT/t8uLFj9dUAPff/fpbpg7j4e9GW1fdZvzw9ucnpe8F0AV9FJcf
YcjuqmjJnuHaHvyrqoFbjuQbm4+KTkp3W2nyLNRwtuH8ZLPqzsN/Hktfw3AlAum2huzGbvU1k7Mz
33Tt8isDZu7iqioa5V23OUgbC/qjiuCN/YDx2sbs3Vejia8PVTILTiC9IY5Knfw9M8bVPyx3Pgsu
Pyn7gzP3tAtXDa5mnaJLsyXsqs7BMHEnN+zcazbrbgmxasc76f5Ps92dUDYhkAqoafpH/sVVSDcQ
9P2wP+70zzH3hD46EbdMGuxyonczhZPqp8EdhjacPtywxdp3nLy50ak1VlcqgUAqrHi7oxb5tESV
X4m5oRn9eiOMXfEfsyeBxkNV949NHTVVIWLPZxFOCKQri5S04RBdak8jvjZnc/3r5du0lDl831/b
nWv4afg214Irf3G4thHLH6Q/meXm7yKlbbsuCKTsftxNx9eg45y/GvtbpdzH+WT8zKqBnVU//PVj
ltCDTlHqzbkn1zb/0YKj55H35wS65ykC6dGxWMYB3gXGv5u0XtXYmkZ10W6W0xGJOHxH9f0ikCqT
0/H8HNhrC7vRsFLbtf/cDWh8t5v4/X9eO3LGMyA2lm6pvi58XY31NZMdxBgvDaSDb3yQnS5zB9u6
Sb37W96V85Vvbz5KO9d953Vs+3bdpWuxR1+lbEAgvSsX13U815/9yrzHdi2zmy6YAv71hxfuHFjX
FkjNzDMgzrvt01SU3rs9EUhPj5lKxo4m7rt6WnOw9ylE83cHKPr+0FtLmdLa5XZ99qZUCBsEUpmJ
lUq5besZTWH5DxE4tcVfbr6/34y1zCph3zVGIJC+9dfuTYXeUzX7EwTOOL+1nBCnNDRxYrBNzE7e
VCpldflvqnI2/vrf0bbcZ1+d+lVGqJMQSHfUPVv/dV0Petv1oZn3vixne8YpX8REhyC+38un2KIw
8/aGE6uX0sbd5vJ+CQKJcxrB3Y3XwlO0V/Wpr5zFsOu9Yt2lspsnOu7/gH/uTlvS6NZg9coZMQaB
dFYURVpKmsnLThearbMDY2+L2cuJKy9SOTvvr9uAx33YnZ934bZGIJCK8/WA/3MSaP7GcXOH+p4b
gx7VPm749TJnit8Yjae+9a4HLHVfbi2FkVAUSPeXGqOjJaU0WJiz5PryaPVNdyIGjxDdEAlFPSFi
XC/eW63e9YLnhnQc0OfIuZVi/t064JmBNJlGERER3T/lLLmtSIojG/djW4TLSpnq7r+ZM3/k61MT
Kw3gewrciON/ksf5KaBGPytU+i8bcfrVJ19bjf1t2demZHxSJ0UT3976pEZ2zwPj07r7KESkLxMd
z27kTtqG3+cBzmyqP4+1Tam0s33c1d1XIT3WwhF+UsVwe/f8thWY6k9EEyddzPsZj9354ke1BfEt
b7J3vz9ln0IEFdLFtdeu/vJMg/KnTxrRNLseMp2M2R/dJ1zV1B5SOsx9iWd/uZ+Vj8WIjd8pN/1P
Ko1e0mnuz4mtoVp6XYV03iU7g6atnYC3NB3cY5sP/xbuaGdv/BLnnjlbcpENRVdIbW63kxS6VG8X
rlpy7kr+juFkPUPz9x4uvecMXdlCvfRcQVG1ZvvVF9f6K4wQSPlF5cLCnCWntSxt05J3ir49gdxF
1yvn0ZYzFW3ymYTVfZBHfjswZlJD3jGc/v1h+MTV5s+dC2o58h/WKo3HqYa9hzXdl9InpI2vlCj1
3kUgkC5qBTJbxmNzIvcp480N09wL7EYsF7XTHySl5ogzQyVfKgsCqeLed85jDgat2/gZo7c07jX2
lzes82AKeP82g9ua+3seIXHmdlM5IZAemEzLE4VXXRwjjc4tjyL3a3UPbBBIFffZX37d+2Oj7u9j
7spcw/ESd2FAICmYbINyy6Nu2G3taaRtA4Z37XLje/WCQFIcFPS+2qYra9kr9wfngRBI5DYH2ot6
q9hU5wXFdjkEkmZOG1TwV5PeeFGOvQKBJJMKbJle3TBtbJe/zemvcEPIJwQSvKnvv7Bu5632oDPU
XiR3SG9JmYVA0jjWXi0WN+3YtA4QSG+JH7E0bvoLyqTBaFVE5vhVHfMaYss8dXssAonXlUpKE0Ag
TXR3z66TeNDOkpo1dxu6t0a3Q/JUPzaBoNqzBbrHPvlqABXSOS1acmI8f2PZUoBAAqUVCKQHNzqV
3kXmro15xua6OBiiCXUeCCQoJ11lEgiky3kmG3dVY4BAAkAg8eIuv/oDEEjaUwCBBAACKbv2CfMa
lJKAQEIaAQgkxBIgkAA9AxBIaP4AgVReG+qGdQACqZxcWppot9zxVxYACCQABBIACKRTOaUEIJDu
YV4DgEAqKpcm5jWEnAIQSIVI5tABCCQABBIACKT7mN0AIJDuND3RzkOSAARSKQWTGQ3HRb6NAAik
bVmkPAIQSKX06nXqlUSAQLopgT5XwiqPAATSjT36P/MalEcAAgkAgQQAAuluzsMDCCQAEEgACCQA
EEjTIrljEIBAuj+OZBGAQAIAgdRpx+u6uzaYCw4gkAAQSO9WQlWUUkp13uPVmltza45AOjiTPM4c
QCDpqgAIpArTKCIiQiYBPEOKOi/BaQOp/4fBv65+xWj+jdX1/wzwFIU3+M4hAVCEH72AP0XS5J8B
UCEB8BK1nkNqfk8UhdvQAQgkADiKITsABBIACCQABBIACCQAivTMC2PLnBE+eZejVZ9lcEukaz5g
96Zr3+7eNd/zjrdv8807jG1+fbthmwukrMN4WwBcs99ktkGDzzL4p4vbxOXtWdqa579jaWue/14F
rnnmEVfgmmc2F/ZzgfQE4xuTb648rszayXepYs3nMrWKNW/fq7/DVLTmg/WsYs2X79FsPxdIDzeu
PLp9qPDxxrrWfNCmV7Hm4xahljUfd8Ar2lsGjXh1R2i9bYtAKvEAyB9mvLfzVdeaD9atljXvtyB1
rXm9+/l4aNoRKpBepJabNo330SrWfPLQqmLNJ0/a2eaO0Des+TPvZVfy2NHacd7xZ7nllMCg4Ch/
zevd5nNjL7a5Nd9WIRW+nz8/kACojgtjARBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBI
ACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQABBIACCQ
ABBIAHC3n8mlKaX+XyMi82e6hf1fSSkNXqG/JOe95hz1OpmfffBBxn/Neesz1hngsYGU0ziO2+JB
UzuIqLkWf3ND3L5F90aT2bBNzvoM3n3ys3/9LSEE0DlgyO5r+5v5w6tql34ODeJnz1vsf/ecDbXq
twAEUpNS+tpuLnf2c5ZMvlf6ddd2Ga/PeaXMvZ8UoBA/X5NmuQA6pAwavNd4+Ktrr9s/LLz4IcmR
89nHQbstVDa8F8CLAim/FR7HwNqGddWMiQua7PFbZL7v3FSFtZ8dQCAd4KjM2DPN4YzN1C/RpAjA
Gf5bbn8Xlk9On9vQWC/XE/1/7b94N0T29U3XnqGZnATY6tZh/O45Wyz/twBe6Mv5oWZqJGpuyXic
LWdJ5nvllEST4bQhJufefe11SDlXZWV+UoD3BlJOAFTw8e5eYUN8AJn+B/jSqDSUxv6ZAAAAAElF
TkSuQmCC
--0016e6594ab26df55a04ad25bd02
Content-Type: image/png; name="2.png"
Content-Disposition: attachment; filename="2.png"
Content-Transfer-Encoding: base64
X-Attachment-Id: f_gso9wc8h1

iVBORw0KGgoAAAANSUhEUgAAAjAAAAGxCAIAAADzlxvYAAAAAXNSR0IArs4c6QAAE59JREFUeNrt
3duWojoUBVDSo/7/l9MPKEZuhnsCc47zYHFQkdYsdhIgxBgbALjaP7sAAIEEAAIJAIEEAAIJAIEE
AAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJ
AIEEAAIJgCf5u/btQwjpnzHGdHn3Z+YSAATSSsOAaR+0yxc9AEAg7VMq7ZsrvdoL4OHKP3YvYgxp
9/CQRgDVNYxFVEgHdb7V2JVX78CYLbfltlwa1V0hKWUAKKJCijF2mdQddHQLFy0BQCBtzaSchTlL
AKjXPedMK54AqmsVXakBAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJ
AIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEcEuhCXaCQAIAgQSA
QAIAgQSAQAIAgQSAQAIAgQSAQAIAgQTAffxdvgUhvC7pEWNM/0wXdsu7P0eXACCQ1qdRGjnt42HG
dP9r5gEAAmm90Szp1Uzbay+FFPBAvQ4ngbS4VOp1ygkSABXSBWl0QvkF8BDDQffCXT/LrpdG1dWY
ANyhQmrjJx00ijEOx5C6hTNLABBI+1SUSxeKIoA7cWIsAAIJAAQSAAIJAAQSAAIJAAQSAAIJAAQS
AAIJAAQSsIfQuN4xAgkAgQQAAgkAgQQAAgkAgQQAAgkABBIAAgkABBIAAgkABBLwOC7HJ5AAQCAB
IJAAQCABIJAAQCABIJAAQCABIJAAQCABIJAAQCABIJAAQCABIJAAQCABIJAAQCAB8DR/l29BCK+7
C8cYewuXLgFAIK1Poy5RusfrHgAgkNY7NEu62kshBTxQ2gZW4V85O05mAKiQ7plGEg54suGguwpJ
bQSc1Z40wU5QIa1Po2Yw0S7G2JtBl7MEAIG0T0U5vzxnCQD1cmIsAAIJAAQSAAIJAAQSAAIJAAQS
AAIJAAQSAAIJoAjRJe4EEgAIJAAEEgAIJODJhrdEMoAkkABAIAEgkABAIAEgkABAIAEgkACuMZzh
jUACAIEE8LbLObAKL4EEIEgEEoDQQiAB7MI16wQSAAgkAAQSwMlyRoAO6rgz+CSQABbkRIh2iUAC
AIEEkJZKoQl62AQSQIkRhUACAIEEPNihJ8mqvQQSQN0kmUACHp8EsWnC1jDIj5OZNWWSQAJAIAFc
wbVWBRLA2XbpB2tfRJeaQAK4Vckl2GoNpJAMNoZvveW9Z4XgnxwkxOtxdyG79PHP1mdj8LCjv6LS
6PVtiHG4Trtw5gHw9HxqYvl1SQxNo8UqNpBijMPSZyqZVked0ILajYbNpvZ9SRfLLmVTW7rFEJpT
WqTq+pD+StugNDlUP8DSoApRn5sKqcDSWJgBD9Y7vi9/g4ubZWeeApDZWHxa3nDgizemzD2nQmoT
qOudS4eUunjvFs4sAR4XSUnvXIifsaTj7hsbvt6H2wXSMFFGMyZzNeBuqTObAXuNGJ1QAwU3WP/F
ibFA9XXSsKVfXcesiLfMMGtfWYElkICbSxv6jY3+fCGzqZZ69+sYlBJIAAgkgEt8z5fbNOAUY/7T
nQslkIBHG+2sy5lLEMPklYdWdK9JI4EEUElwSiyBBDyhJPph6uz70eUHXA7c7G+BBIBAAqi3CJsq
qLLHlkzyFkgA28xcWtNVNwUS8IggKKak2D7eozwSSMCDTE1tyAmD4TorJkr8fiMVlUACODwO87LG
5DqBBPvTCVNUYdQraLZcyC4nWvrrTJQ+IaqKBBLAyjiKU4cd8fvWEUtrnejOEwIJuFtkhGPXP2qb
3bxNIAG7qLSLMi1K3IVIIAEUXnP9uID35Py96Hp0AglQomVmzSBL9ir1hq8snAQSQBFl1lfamVwn
kICbN/vHtfPzEbJ8SkKIryrqa6reu64yoCWQgFvYUH/MRFrmtOzVs7eFkEAC7hVG71Z9wZW247Jy
Z98ThmbmfDu9WiABrA/CxhWABBJAUV5dcOYvCCTgvJb3jk3uVHfZiuqne0q7o3TECSSASxNOP55A
Ap5ZpR1+gbhfV3D4rDg9fU5KCSQ466BY58xFabQsV6YC44Dhn95XIjZRJgkkOCGOpFE9kTaVSS7C
LZDAkTtlhlYvuob1zXwHna+EQIJzSyM9dcIegQSw/kjilP45lwgSSABnR4UJCwIJSjro1n337N3u
prQCCa4+1n5ODBU5mfCc/d8rgOSNQIJSG2qt01VlUOFztUNQNgkk4BFl6Pb+uvz52fNxkv7f1+34
pI9AAtirrt1S08QmtgWcwkggAeVlwPKCxlQRgQRQhMMvnJpf7vDAQAqDmTwhhN7CnCXAPcus6OKB
Aum6NIoxxhi7/5WzBGB94KnACvB3fV18WKikLxtd1heYaIOataNWhYdKdcfrxpAAdYxqRoV0fO3l
H5ijq3stFVW0gVVUSyokWPgjD27sdun+dwigQjqwDA+heU9SSI47QxrvOUvgZkITCml8Y2iu3ZDY
rB/m2T3MJOKdA2k0UYYLc5YA++diGTdCdVWeJ9BlB5Sch6G6KMoqoWJ0ZpVAghMbHYrd5/pXBBLU
fbDuGmuiDoEEPC7+5y8XpMQRSKAwevzuuHJvuO2QQAK4HTWWQAIAgQSbVTgLGQQS3CiGDCOVtFtM
ihNIgFBctsE7brMQEkjANRfOKTp+zp1oJ4oEEtCE9ij//Tg+st9uSx5EPZ0IJNgzlpKri155j7g6
G3eZhECCm6VisBkIJHg6Yxi9enHu/5rFgECCu6Xg8ob97HkQIeiO2/ZvLHEFEtw3k0AggXjYr/C4
y0m4n5kgTitGIMFuIRGPyo/xs0frvEDR8IOU+SmMTgkkuMExf1ZDtjSiauya+/kZ0xX0PSKQYHMA
hc8xfvvgqIPreqZTL94Dhu4RSAAIJLh12TRWIqweSep1Zxn/RyABl+mN/LcRVcvAe2+saPfhInef
EkhAvx6aSoifk5sz78Lwtc7EuEuB9dOxExaMPwkkYMfj92GT3cuV/GKonOlqry1JA2PhVPXeTpjK
WlO0BRJwWUM/2awXVi585h++s0R4IJCggpiZrw+aGOeqn3omhYc4t7WmbCCQ4LzI6be50x1Zw7Gl
mfZ69EXKad8XbEkITfj64FIKgQRL8iajMyqGrW3rSH9dJbXRXE/jzGohN48RSMAhNcR471yMvTY9
/TNzeKacNr3/GQfJ+gqn9/LP+nVexw+BBMUVCk3eXLipNfPnBVyZPd/TK9JP8bX979V6yZreEn4u
wxBIwJZmOj9jhjOn2zXrmqu2vppxjhECCc5rrMeKmNfCuLUSuryeWHD61HBNaYRAglOb7PBpf7vH
meP/OS3+9mkUG8vBya0NIXdhu2eC3joEEhxdJB1UCRTcgs995OnCyEQGBBLs0QT3TieKWYER4rZW
eDBktWcn3sLA+zkhcPTDdmtKIwQS/GiUc/vWQlbGZF5ldWUtclHN1M6aWxQ/M2VTu39cgkggATtl
w8QKn2GkbbPpSrzm97YIkUAIJDi7pd6lVy2G0mepDQNG5CCQ4IzaKMSvBneq8W2rqBXXXzi7sFjY
+7fLZsycMMtz/BX38/7+McTuZO8Q0j9Hl8DRR/qbXzE2R3a4xdAUUoooibhDII1mTAihXTjzAKpo
iI9rqVUYCKQDi6SNSZMWW0KL4xIoZ5ZB5mrrvugufMDPNrAKxY0hxURw/jaV10P7NzHDc552nXd3
4RQ+vXz83fizqYrYdGyZ3UBmrriuwc2/djjMtIFVHN//K7Ad8DWi0upn92P815S8jEMrFztAhXRI
pA/HkLqFM0ugrEOrAzLi7GkLjg55eCBNZcxwoSh6Rpsez3/97VmyZ3LMfs9j85lH/nq86xyHYGCH
EzkxFg44qGqb8b2PmX6mw/aiLL2VuH9HBNJeP124aeEYdw6hYU1mRAqBBKyMkDXBlszwDm1fX7Wf
BYEEmw/2m9v2Cx1VZEy01yvHeroJRIX8O0gjgQQlZFJBB+n1VkorYsk+RyBBL5MyD9L3KqrqLc76
t7RYO2Aag7OXEEjw3SyeExv5L7VLS13mfOm2DL1xTykCCfZLoxN7kB51xZ30Buo/P3iXpk5DQiDx
lCayeZ9D2j2WRkeUWaEJMTTtf8OdrGBCIKE8+pFA52TGk5vj2MQmxvLviY5AgkNzIPzInrBgpsPu
G3azrqp2N4Y4FzwhmnGHQOKxkdQenzdxeE3rg3rwvqaYz25Y9fu2d9Jr8qFeWZtmj/IIgQSjGfCz
D21LJ1v/uWM1wX3Ko4mKJ/+uFnvtdhBIFG3Y7p+QBO0Eik8X1p1DPkzt3ldpetcYRiDBGW3stoP0
dETqzmn0jqJ0WEjeIJAgK1fmm8vXKEhyGs2KZOom9d389KOk9Gn3qisyIJAguwntXQsnfDevYZBG
G25/97SmeX5mHQikc47BzWGt+AD/lTrdmEc4pKxJg/AVeHf5znSnFumpQyBBVnOZXza152+mvU/5
vXavC7jF8dfvRd3Te7eUUwgkmIyT+AqJ7sHGkih9ndeDELpYumVJkfmhDDUhkGBBs9idS5vfiTc/
qt+NstzmPJuDxo2iLnAEEjLpNVusiYsO+dOA6V2+2tWs14aS3YVAgqWR1p392oTRTBpGlwoABBKM
1ENbX6RNl2RwyLE/CCS4Jqv6MxdyXlYsgUCCHUIohPQs2sWVljSa37cgkNC0TRZAIXRXFUpvLdGd
55Qzj9m8hp+7wnRwzvFnF3BBJB0QAqNjRbGJDwwcEYsKCc5udl9nI3Ul1/uyQ+yxf6UaAol710bN
njcIf91tNsZPCGlGoVq67Dj3sPuA8iU0oQ24LouCTitFEiokmI2O0Ow90aC78kL3FCPwIJDgmoPu
/u2UVEcgkIo9JKesSDo+MGQSCKT7H4wDIJAAEEhVF0l67QAEUk3klj0MCCRF0lMY1QNUSAAIpKOE
EEJm6fOzSAphZB11FYBAykmjGGOMMRwUG+nLvu+yM7IcgJ3c+Vp2aVbFtgBaNIbx/ZTQXSAtKade
lwoN7/Wbz9VxYpM8vbewfRyakYW9MzpDaGJ83eDn+y0+JV1v4cYMjvH3wsGGjX7e7nGIzlStW2xi
0zj8qrsNFEgX/4a+/mHa27lN/KjiYIV0Sex+kyF8vVpsYkjuk92E+EqtGEN4/YDTUAxN04T2WZ92
vM21NjO7Z3WbHZsYkmuzpWGWFG1tVLYrfz935PHoCiMv2wvmked+dkLy0fob8/UZAWYSNNY58ant
sksfDI8L4sRx/Xhx0Cuh0lGltEXuVkurgbGyYLfCZVFlM/O492Bm4XRJNLcNMxtwwk7g+J+cf8Qb
VEuFN/huP5FZb41lUvdn78HUwuO2Lf9x/sKZd5n5v1ftBKB+tQZSN50hbhgW2qfdB2APFU/7bmfZ
7dMX0euw+r4lNgAC6ZAcm5yuHePIgIdMAj8ETmEMyQ8PQIV0Iee0AggkNRAAAmmsVJJPAALp+jQC
Mjl0QyAdm0Z+YwACyREfAAJJGgEIJGkEgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEAC
QCABgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEACAIFU
nhBCCMGW23JbbssFEgBc46/AA5D0zxhjurz7c3QJAAJpT8OMCSG0C2ceACCQjiqSNiZNvV29ttyW
23JbLpAu/neNMfY65VQ/AALpDAfljRgDqE5xs+zUwgDPVGKf2OgYkll2AAIJAA7nxFgABBIACCQA
BBIACCQAivR3y09V5ozwdReeSD/L1JVnT9iZK97u2i3f8o6X7/PVXxj7/Px2wz4XSFk/46KuPJR5
wm9vm3ufZXga1plt4vz+LG3L89+xtC3Pf68CtzzzF1fglmc2F77nAukOYoy9f+Yt15A9LWtH36WK
LZ/K1Cq2vH2v9AtT0Zb3trOKLR99I99zgfQUw8qj+w4V3t9Y15b32vQqtnzYItSy5cMD8Iq+Lb1G
vLpfaL1ti0Aq8QeQ38147cFXXVs+vHtWFVuetiB1bXm93/Nh17RfqEB6kFou2jT8jlax5aM/rSq2
fHTQzj73C33Clt/zWnYl9x0t7ecdvars+UMCvYKj/C2vd59P9b3Y57Z8XYVU+Pf8/oEEQHWcGAuA
QAIAgQSAQAIAgQSAQAIAgQSAQAIAgQSAQAIAgQSAQAIAgQSAQAIAgQSAQAIAgQSAQAIAgQSAQAIA
gQSAQAIAgQSAQAIAgQSAQAIAgQSAQAIAgQSAQAIAgQSAQAKAq/2NLg0hpH/GGDPX6RZ2T+ktGT4r
572mhBCGb7TidbZ/rtElMy++6FkAzw2ktHHsNdAz6/TioQ2b3pJhy5vzXjNpNPqyi15nl881+knn
4zPzWQAP8S+/BFm0Ts6Spe+VxkyaQ7342atlX/06cgVgtwppYxrltPXDWmS0xLmqcU+357htEF0A
n4Z3qk1cMSKSVirzS7rHoyM0o11bvXZ8qrNrl/Jo6rNPDVn1tnDRGNK+VR3ADSuknCZ+Znxoasno
Sw2fNTWz4JxWOyfq5mc3ZI4hSSOA34F0rXUN9HEte42vDFCXf1Ot5M/l62ayDZ81/zpTXWFdL1nO
VIilk/d+Zkb+C/78dNII4NUk5o8hXbskp0Efbd9XNPo/z53a63Ptde4UwJ0D6R5H9JdvsBoIINN/
ISWU8lTudH8AAAAASUVORK5CYII=
--0016e6594ab26df55a04ad25bd02
Content-Type: image/png; name="3.png"
Content-Disposition: attachment; filename="3.png"
Content-Transfer-Encoding: base64
X-Attachment-Id: f_gso9wixa2

iVBORw0KGgoAAAANSUhEUgAAAjAAAAGxCAIAAADzlxvYAAAAAXNSR0IArs4c6QAAFEpJREFUeNrt
3duWoyAUBUCZ1f//y8yDifGCinfUqqdpJx1NOmF7ADHEGCsAuNo/bwEAAgkABBIAAgkABBIAAgkA
BBIAAgkABBIAAgkABBIAAgkABBIAAgkABBIAAgkABBIAAgkABBIAAgkABBIAAgkABBIAAgkABBIA
AgkABBIAb/J35s5CCO0fY4zt7c2Pq7cAIJByDfMjhFBv3PgPAATSmiLp6BTpVWMAL1f+ufvfVW/H
oZWNNAIYNoyFZ9Lfg9/9O3bl3XdgzJE7ckde/pEX7p93BIDXVUgxxuEYUrNx4xYABNKyTMrZuG4L
APf1zDnTiieA27WKVmoAQCABgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEAC
QCABgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEACQCABgEACAIEE
gEACAIEEcKFQBW+CQAJAIAGAQAJAIAGAQAJAIAGAQAJAIAGAQAJAIAGAQAJAIAHAXQMphND7cZct
AOk2x2KmAikzjWKMMcZm+7otANza3/lpdFqKtPcSY/THBt5VF97tfP3fye+OYACglArptHASfsCb
tdvAW1RLf5e8O0olAC6ukJIpVUd3E1HrtgAgkDYVkslQWbcFgPtyYSwAAgkABBIAAgkABBIAAgkA
BBIAAgkABBIAAgmAhOg+bgIJAIEEQFVVVeU+1wIJAIEEQLdMqtRJAgkAgQQAAgkAgQQAAgkAgQQA
AgkAgQRwBNfuCCQAEEgACCQAEEgA+zDyJJAAQCABIJAAQCABIJAAQCABIJAAQCABIJAAWMpVugIJ
AIEEwFdUIAkk4O4e09kVoj+mQAJAIAGo7RBIANJIIAGAQAJAIAGAQAIoRvvCI+NJAglgK1kikACe
GWmxcn2sQAJYGSmKJIEEcGfWr8v0d+7pRbdijbG9vflx9RYAoSKQ8v6igzip/1Fv3/gPgNIEK6kW
G0jtNDohRdoFmdCCt9c3J7YBoQrJOQsxVFWMVRWqGKsQqoPbpXC3Qa8LxpCCgUEASqiQTutqUxUB
r64LU6MkKiS1EfAC3yYuhs9VR98+um5OuAKphAopxthkUhPdzcaNWwCuDKPu/IWTR60E0tYScmLj
ui0AV5mdF27i+CwXxgL0a53jTsm9vQIJAIEEcCl9ZQIJ4PnclkIgASCQAC5SfuebgkkgASCQAF5T
cyiABBLAnTM1utusQAI4WLNsHQIJoKx8mqqTEEgAp8RRrKpf71yncrJokEAC2GTV2I9iSCABbA4g
A0ICCeCmrJUnkAAuCxiFlEAC5MSJtl08NHPApjkIJIAzQrGbNyoqgQQ8zvlLHjR7/GbMbLrEKk78
iEAC7h9G5zfskx1r6h6BBLwsh27U7hsZEkgAc7G26hLXVBY2I0kmfAskgIW5clzdoiQSSADlh581
hAQSwNqCRy+cQAK4tK5JB1HujO2MASqTvwUSwBmFlN45gQS8ruk/qkb6TqibvuN4/hx0ESWQAJmU
mRghdy54MLIkkABWVTn7P7NyRyABPKBcM6NBIAEcVS1ZyE4gARRZOamBBBJAuo5ZWMHsPnVCRAkk
AAQSwBXFTbEUSQIJ4MAUETMCCaDI6sodKAQSwO3DDIEE0AqiNTnkRhUCCeCASJrrdeuPG+mmE0gA
heeZKQ8CCQCBBHBJXTKYgxCDxU8FEkDZWYVAAriGWXACCQAEEvAGu95QfL5zzwxvgQSQyA/p8Fx/
p5/ZhO85R+xt3L4F4NPCHDOAFKKhqadUSCGE+NUkU7Nx4xbgFUnTzM/e/bsfY07YKNEeUiGdXM20
s0ohBWwqjJZsL+Ww73a+/u+qt0lCAKMnr2G/h4WgplEhXZ9GMg+eFlR5BUnYo18t3L9zbjjorkJS
GwHXaKZ0r+haM3nh4RVSHdG9iXbNxIQmqNZtAdi9xJhq0LQ9tw6ksfAYbl+3BaAdGLtXObGKVsk7
jgtjgRtES1X2EIjFwgUS8OAUKr0QEUICCXidiaa/7kBb1o3WjTqTFwQSwH6JlR0q/egyFC2QADKr
mdnJbIvKo190jXQJmjsnkAB2K4/qLbNjPLJHIAGsKpZm86O+0jE7ZvJnJZi/IJAAsuOqWpBGriUS
SAB7xo9qRiABHJo2tylfhJ9AAp7uotnYpjkIJAAZg0ACCi+WLukWGy/RdNMJJAAEEkBpZVOYKV/a
PXVqGoEEsJvhUFBnS4zpiFo4OUJ0CSQAEEgACCSAKbNXyI701JnqLZAA9guj+PYDEEjP4bMEb9ZM
T1g9T8EEB4EEsCwwPqVMxoS6sSVZzREXSAAXlCwhLrjlOQIJYEVkKW4EEgAIJOAVxY+hHYEEUHIC
7TA5O0ZpJ5AAQCABL6ulEEgAIJAANdNva3T5kUACKC2y9PIJJIATiiEEEsBtaiNFkkACAIEEgEAC
AIEEPIrhH4EE8IQ4MzFPIAGAQALOMHaP8APKHFWOQAK4PI0QSABn27cSUlcJJOAN5ZGlSxFIQAGV
zBFppKARSMBr6ppw9MCPgSUEEnB+leSGQwgkYFV5JEIQSABQQCCFEIZbehvXbUmcAMJ7Cp7lozUG
eHh1ICXTKMYYY2z+a92WwTcNNL5wJ38n728iQg7Nv2j+KByW9JYrLfRPc7deImNIoKTbuRW88tdR
IRVLYQRnhlCIO1whq+A6ogG8RbWkQoIXN1j7tfxBhnC7CqlO6XpKQpPh9caNW4AiiqVYxRCs+sMN
AimZH8ON67YAWZlxWK9YrOJn6CuEumaKodIBRyZddvCopNn9keuKpOS+zLxHIAHtfDgvFaxLhEAC
MqJi107vdh9gpz/QcnkIJLhHuVKlbwBxVO9WCMOZ2Rv31Xu2LaNT9ZGY9S2QgMIqmL2T78BYjde8
KAQS3LgcOXt3IQzHbJ43tq+mQSDBU5NTKYFAArIrrbHhn1/dEKaqos94STilIyuEy7vLzPlGIMGl
rXDMbaObkGt+cUWErEudQ7JqMLkuZy8GmQQSsMPZffIxycGVGPoP3qV6+LTm40NWv73EzrTsYt5l
cSSQgC0BMFLrXFIK5Mx2qzNyt7VQv0sE5R6P1EEgwaHl0aZCKnXp6BHz1toXw14yLy4dXSIKgcTL
a5qtxVAIve1jTXyI6TY3McQy2TRv7NY77vYQUy98aZDHaJlwgQSvSaO15+OJaXJxQZz0DyPGarB+
T4iJ4aXV2TB9wKcXRyHEVHQNch2BBK+wrkWum8v11VXTCrduq5p6XJwo40IVNpZ3F167+rkPxdgB
xFiZFI5AgsymsFcMjWXDRH1T/8rYWm39iBre/SvkHmryV2Yi4ejatLffEMQPAomj2ustj7/va++3
s5MlzjVHfvR8geznbxL3d9e+VHwikEDQLnxYjL8WNvmAVEu97lrXZj2I/q+Ph8GZ5wTrx6Xaxx93
nYmOQIKn1nw7SE0eG7a/sYoTjfLYjIBiTfUQmkqHQIJfkxgWP+yzevfc4z+hEsJss9vET9N29zPp
Owlt7Kbg7Uf2Z/3FmJUN54ZTrEYmdosoBBJKpdk06ofB3ASB6dZ/wdU5cfQ5p9K0e5nt7neG3a1I
grcFksk8/nzJ9rFZaTsnFfZsVWORT1VG5EgvVEi8JNw6q2hn1Q2t3rm6rZwNsPyl5Cba3xXt8l1P
vCwaxKsCyVzSR9ZAK38rLn6qzq98Z4Jl9ciVUb4UPW+tfosMHfGSQKq/jXrt7pVPs3+vLWsW5Ncf
zWH0B2+6P07M5F5ULU387/SLnX3HzKVGIL39FN6bcHgJe1xvz8TqattO51ePkfRDJfyWIq27H4fT
8Jo9ljwwIywRSBSWxyFM7OvKE4ICepNCrKqYCpUYSzvUMxMagXRXnwWUWdu+b2w1dnzzd7zLav+S
nW467rXe9iEZGbLW8FZ8IJAKjKP4zpk812ZwzlDQioNsVt1e2tr2k6y1rlrinhSp2+VlFnnnn/5L
IwTSI5vw8IbXuG7MZuNkxc8CB4OuueEd6nprWifW1Q5hl7Y+8xkW7Ki+v9EVfVDJeeR6wxBIpZZJ
t+21y5x1dmxJFLauG524NWq3HT/5TGI4U67YSlquIJAoqUmam/Wb/HeVMeKSn2H5E+hHjyd2lkjo
tf7NI5s+tJx9Ne/M78Fh6l5EycZ9rHfrLr1es5fZgkAq4pv6awo3nvyecu6cbIJ3vLA3P9h+W+ou
voVFzMy1NSGxx979v9OHGkJ904fhladjN2VIJmLyUPsvf+FLft2YjRUWEEgbuzumTrrL+IKt6Hxr
j7KMXqFZhU47m/dik+uKbgq/5swgdq/3bIqn2NnjbN0zk6khnLBOx/QNI47ZZSwk/0xeRSDtE057
FRZ7HmGYaltXN76fdQ1C6Lf+qb61373gWve9XvxWhJDb8zZSiDTLzf3qocl9VcPlGxaeYXw+HoPF
6w79aN29SLIuFwKpmHPAdpM32/zNPrjbYdWeizw6yFGFujmux+R/9+AZVE5VM26frIGqkJjM1m1q
k/ewybx3w8bzhl5UDJceqI/ts6/2QeaVg/0nXDXJ4uRMmt3dmuPJj/AQNr5d8O5A2nEYaSxamqlo
0w8Y//KnV0XrXqXfzAj4ddO1/zcuaGUS198kp1kvDO9mzGl6ssDYOjcTjenwV+brp28muS5n5m8X
j308CKREe7ey13vdaeBcJfRpK5OLeMY42oymtn/CoIrVYMSoToiJCWb1A0JsFWQjgZeItPFVf+rB
lf4yazFdiwyjZbgl96w/dfKR9btO9kutCBFITGXMsmBrjXM0Dd/ozbCbB6duc9CeCNA09InCYq4m
SK8a11s2LS5bFXtRWzbaNdf9d85i2HuezsskEEilx9B4mzuaK2vb6yr7Btg57ezYY5rrcpJjS/Nd
YYPXNdbXlxkG66ecjP1iXBargEA6s5chVp/JX5sSounaGjZ/E9OUmxvbNA10Z652qyoaa2qnl2zo
lBdhJhLa+xqrRUYb+pBe9Wc6FNflze8iobzoHYtq/UsgkO5WBsUqv9aZWt+zHU6DZTo/jWMz7B87
eTBxUctwUCd5q5vhr6eb48mrROfLju+PY7enm56esPQkIDnHb+bx7FeUZ30YQCBd/00O3X83ARNm
vsDtumG+Aoh55UszryHOP2ZTqx1GLpO69PpiOXTBORwIpI3N1rrb6iTa8Th5/UqcKl/aaZS78nTm
Kj7xwFqhMxmvu13zpK4CgbSkkyEsmx23fkepH5Nf4NzBm+Jbirq/USw9uiYKVrHjUH9v/4pNlkfz
Q/dx7iL/Z3W11+VcqOs6J8tvS6MnfqQRSCdFzejYfLfX7tsVFmYiJ4QFvWHxgL6yqpRWv7ukUNXM
8HC3+OenERzp1ZMa2hPV+gHTjZ/+v50kjpRH01e8cuc/s489Amn3L9X3Htg5DWVnRMS3cVtW8ZBv
EAikVC9CCEf2JBTV+6Rl5/AvVDVYIFhPHQIpM41ijDHGQzOpqBiQSRz7AWstGtLOJOOCnObJs+za
WRV1NcBUHP16s6v4qZOa9dp5QBuoQir6i5f++306LHwFobVok/M5VEiboyeu+QZ+s0kXGW88Xev9
Qxo9pQ28RbVkLTtA8KBC2pb8deAbHAIQSAVVo4s11732LoAF4CKv7LKTQAACCQAE0oD+OgCBVKLm
EiVBBSCQSskkAATSScbKILURgEAqqE4CQCABIJCUQQAIJAAEkvIIAIEEAAIJAIEEAAIJAIEEAAIJ
AIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEE
AAIJAIEEAAIJAIEEAAIJAIEEAAIJAIEEAAIJAAQSAAIJAARSuUIIIQRH7sgduSMXSADwmkAanl8M
TzrWbQFAIG1KoxhjjLH5r3VbALi1v5P3d2aE3DerHLkjd+SOXCAd+DeLMXq7AbggkC5MIOEHcDtm
2QFQhHByMdH047X3W2/cvgUAgQQAm+iyA0AgAYBAAkAgAYBAAqBIf498VWXOCK/X39vyWi5Z/CI5
U7/8I9+yx8vf89UfGO/5+e2G91wgZX2N1wXAOZ+bzDao91qGl2Gd2SZOv5+lHXn+Hks78vx9FXjk
md+4Ao88s7nwORdITzBcVXZ15XFm1ib3cosjH8vUWxx5va/2B+ZGR947zlsceXJHPucC6S2GlUf7
zhpVwf2N9zryXpt+iyMftgh3OfLhCfiNPi29Rvx239D7ti0CqcQvQH4347UnX/c68t6x3eXIe/f9
utd7ftPP+bBr2jdUIL3IXRZtGn5Gb3Hkya/WLY48OWjnPfcNfcORP3Mtu5L7jpb28yZXlT1/SKBX
cJR/5Pd9z8f6XrznjnxdhVT45/z5gQTA7bgwFgCBBAACCQCBBAACCQCBBAACCQCBBAACCQCBBAAC
CQCBBAACCQCBBAACCQCBBAACCQCBBAACCQCBBAACCQCBBAACCQCBBAACCQCBBAACCQCBBAACCQCB
BAACCQCBBABX+0tuDSG0f4wxTj+s/YAQQu/H5JM0D8vc19gBNI/f8jzTr33imXsvduyQpg9m+CQA
AmlBg95reZt0qVvw9o/TzW4yvfLTqHna1c+T89pXBEbOax++CoDX2rPLrp0Nw0iYDYzZRrn9WxP7
Oq1xH76KpUE4/Y4BCKRfcznRSm7pExv+7rCjb3rvJ4TNMOeSiXh+EAI80t9sbOQULhMPyBlHqR8z
0dHXPEn9j+mn2p4KwyPJfzfagZ05hgTAaCDlN6CzDfQwWiZGaKZnOpxTguQMIOWUR5ljSADMVEi7
pNF0zTTx6+ua7zPb/eGryHldAIz5N93aTmwfNrtNJ9V00tTadU9Ou99LqZx9Nc+wdPLe7Jbhqxhu
yXxFma8C4PFC/jVGvS1jV+csvQ4pZ1+ZJVHOdIlFmTR7PEuvQ8q5cgtAIGW11PdqOgs8YPEDkPQf
r6fzJTnQSt0AAAAASUVORK5CYII=
--0016e6594ab26df55a04ad25bd02--


More information about the tor-dev mailing list