[tor-commits] [tor/master] prob_distr: use "clang-format off" to avoid wide lines for URLs
nickm at torproject.org
nickm at torproject.org
Thu Mar 5 13:25:48 UTC 2020
commit 9feeb4cf97d98c7b8cf3c7e871b239cea835f3f4
Author: Nick Mathewson <nickm at torproject.org>
Date: Fri Jan 10 08:58:39 2020 -0500
prob_distr: use "clang-format off" to avoid wide lines for URLs
---
src/lib/math/prob_distr.c | 8 +++++---
src/test/test_prob_distr.c | 4 +++-
2 files changed, 8 insertions(+), 4 deletions(-)
diff --git a/src/lib/math/prob_distr.c b/src/lib/math/prob_distr.c
index 548d25602..31d485120 100644
--- a/src/lib/math/prob_distr.c
+++ b/src/lib/math/prob_distr.c
@@ -1284,15 +1284,16 @@ sample_genpareto_locscale(uint32_t s, double p0, double mu, double sigma,
/**
* Deterministically sample from the geometric distribution with
* per-trial success probability p.
- *
+ **/
+// clang-format off
+/*
* XXX Quantify the error (KL divergence?) of this
* ceiling-of-exponential sampler from a true geometric distribution,
* which we could get by rejection sampling. Relevant papers:
*
* John F. Monahan, `Accuracy in Random Number Generation',
* Mathematics of Computation 45(172), October 1984, pp. 559--568.
-*https://pdfs.semanticscholar.org/aca6/74b96da1df77b2224e8cfc5dd6d61a471632.pdf
- *
+https://pdfs.semanticscholar.org/aca6/74b96da1df77b2224e8cfc5dd6d61a471632.pdf
* Karl Bringmann and Tobias Friedrich, `Exact and Efficient
* Generation of Geometric Random Variates and Random Graphs', in
* Proceedings of the 40th International Colloaquium on Automata,
@@ -1301,6 +1302,7 @@ sample_genpareto_locscale(uint32_t s, double p0, double mu, double sigma,
* https://doi.org/10.1007/978-3-642-39206-1_23
* https://people.mpi-inf.mpg.de/~kbringma/paper/2013ICALP-1.pdf
*/
+// clang-format on
static double
sample_geometric(uint32_t s, double p0, double p)
{
diff --git a/src/test/test_prob_distr.c b/src/test/test_prob_distr.c
index c3d1c80d7..c5423ce14 100644
--- a/src/test/test_prob_distr.c
+++ b/src/test/test_prob_distr.c
@@ -1223,14 +1223,16 @@ test_stochastic_weibull_impl(double lambda, double k)
.k = k,
};
+// clang-format off
/*
* XXX Consider applying a Tiku-Singh test:
*
* M.L. Tiku and M. Singh, `Testing the two-parameter
* Weibull distribution', Communications in Statistics --
* Theory and Methods A10(9), 1981, 907--918.
- *https://www.tandfonline.com/doi/pdf/10.1080/03610928108828082?needAccess=true
+https://www.tandfonline.com/doi/pdf/10.1080/03610928108828082?needAccess=true
*/
+// clang-format on
return test_psi_dist_sample(&dist.base);
}
More information about the tor-commits
mailing list